Binoomi laienduse (Newtoni valem) definitsioon ja näited

Binoomi laiendamisel kasutatakse väljendit, et teha rida. See kasutab sulgudes väljendit nagu ( x + y ) n {\displaystyle (x+y)^{n}} {\displaystyle (x+y)^{n}}. Binoomi laiendamisel eristatakse peamiselt kahte juhu: eksponent on mittnegatiivne täisarv (lõplik summa) või eksponent on reaal-/kompleksarv (infiniitne seeria, üldistatud Newtoni valem).

Newtoni binaarse valemi põhiidee (täisarvuline eksponent)

Kui n on mittnegatiivne täisarv, kehtib järgmine täpne valem:

(x + y)n = ∑k=0n C(n,k) xn−k yk,

kus binomiaalne kordaja C(n,k) ehk binomiaalne koefitsient on

C(n,k) = n! / (k! (n−k)!).

See tähendab, et ekspansiioon koosneb kõigist võimalikest termidest, kus x ja y eksponendid kokku annavad n, ning iga termini ees on vastav binomiaalne kordaja.

Näited

  • (x + y)2 = x2 + 2xy + y2
  • (x + y)3 = x3 + 3x2y + 3xy2 + y3
  • (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

Numbrinäide: (1 + 1)n = ∑ C(n,k) = 2n, sest kõik termini x ja y asendatult 1-ga liidetakse kokku.

Põhiomadused

  • Symmeetria: C(n,k) = C(n,n−k).
  • Summa:k=0n C(n,k) = 2n.
  • Paskali kolmnurk: Binomiaalne kordajaid saab esitada Paskali kolmnurgana, kus iga rida moodustub kahe kohaliku elemendi summana eelmisest reast.
  • Kombinatoorne tähendus: C(n,k) annab viiside arvu valida k objekti n-st (k-komplektide arv).

Newtoni üldistatud valem (reaal- või komplekseksponent)

Kui α on reaal- või kompleksarv, kehtib üldistatud seeria (või Newtoni seeria) järgmiselt, kui |x| < 1:

(1 + x)α = ∑k=0 C(α,k) xk,

kus

C(α,0) = 1,

C(α,k) = α(α−1)(α−2)...(α−k+1) / k! for k ≥ 1.

See sarja kujul on lõpmatu ja konvergeerib tavaliselt vaid piirkonnas |x| < 1 (välise tasapinna piir on sõltuv α väärtusest; mõnel juhtumil konvergeerib ka |x| = 1). Näide: ruutjuur (α = 1/2)

(1 + x)1/2 = 1 + (1/2)x − (1/8)x2 + (1/16)x3 − ...

Tõestuse idee (lühike ülevaade)

  • Täisarvulise n korral saab valemi tõestada induktsiooniga: (x+y)n+1 = (x+y)(x+y)n ja kasutada kordajate omadusi.
  • Kombinatoriliselt näitab iga C(n,k) seda, et vastava termini moodustamiseks kasutatakse väljendist täpselt k korda y-d ja n−k korda x-i – erinevate valikute arv on C(n,k).
  • Üldistatud valemit püütakse tuletada analüütiliselt, kasutades Taylor'i rida või kordajaid defineerivaid gamma-funktsiooni väljendeid.

Rakendused

  • Algebra: polünoomide laiendamine ja lihtsustamine.
  • Arvutused: kiired arvutused, nt (a + b)n arvväärtuste leidmine.
  • Hulkade kombinatoorika ja tõenäosus: binomiaaljaotus ning kombineerimisprobleemid.
  • Analüüs: funktsioonide lähendused Taylor'i rea abil ja ruutjuure ning muude võimsuste laiendused.

Kokkuvõtvalt annab Newtoni binoomi valem võimsa tööriista nii lõplikeks polünoomlaiendusteks kui ka üldistatud seeriaks reaal- või komplekseksponentide puhul. Lõpliku n korral moodustavad binomiaalsete kordajate rida Paskali kolmnurga ja neil on selge kombinatoorne tähendus; üldistatud puhul tuleb arvestada seeria konvergentsitingimustega.

Valemid

Põhimõtteliselt on olemas kolm binoomi laiendamisvalemit:

( a + b ) =2 a +2 a 2b + b {\displaystyle2 (a+b)^{2}=a^{2}+2ab+b^{2}}} {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}}

  

1. (pluss)

( a - b ) =2 a 2-2 a b + b {\displaystyle2 (a-b)^{2}=a^{2}-2ab+b^{2}}} {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}}

2. (miinus)

( a + b ) ( a - b ) = a2 - b {\displaystyle2 (a+b)\cdot (a-b)=a^{2}-b^{2}}} {\displaystyle (a+b)\cdot (a-b)=a^{2}-b^{2}}

3. (pluss-miinus)

Me võime seletada, miks on olemas sellised 3 valemit lihtsa laienduse tootega:

( a + b ) =2 ( a + b ) ( a + b ) = a a + a b + b a + b b = a +22 a b + b {\displaystyle2 (a+b)^{2}=(a+b)\cdot (a+b)=a\cdot a+a\cdot b+b\cdot a+b\cdot b=a^{2}+2\cdot a\cdot b+b^{2}} {\displaystyle (a+b)^{2}=(a+b)\cdot (a+b)=a\cdot a+a\cdot b+b\cdot a+b\cdot b=a^{2}+2\cdot a\cdot b+b^{2}}

( a - b ) =2 ( a - b ) ( a - b ) = a a - a b - b a + b b = a -22 a b + b {\displaystyle2 (a-b)^{2}=(a-b)\cdot (a-b)=a\cdot a-a\cdot b-b\cdot a+b\cdot b=a^{2}-2\cdot a\cdot b+b^{2}} {\displaystyle (a-b)^{2}=(a-b)\cdot (a-b)=a\cdot a-a\cdot b-b\cdot a+b\cdot b=a^{2}-2\cdot a\cdot b+b^{2}}

( a + b ) ( a - b ) = a a - a b + b a - b b = a2 - b {\displaystyle2 (a+b)\cdot (a-b)=a\cdot a-a\cdot b+b\cdot a-b\cdot b=a^{2}-b^{2}} {\displaystyle (a+b)\cdot (a-b)=a\cdot a-a\cdot b+b\cdot a-b\cdot b=a^{2}-b^{2}}

Pascali kolmnurga kasutamine

Kui n {\displaystyle n}n on täisarv ( n ∈ Z {\displaystyle n\in \mathbb {Z} }{\displaystyle n\in \mathbb {Z} } ), kasutame Pascali kolmnurka.


Laiendada ( x + y ) {\displaystyle2 (x+y)^{2}}{\displaystyle (x+y)^{2}} :

  • leida Pascali kolmnurga 2. rida (1, 2, 1)
  • laiendada x {\displaystyle x} xja y {\displaystyle y}y nii, et x {\displaystyle x}x võimsus väheneb 1 võrra iga kord alates n {\displaystyle n}n kuni 0 ja y {\displaystyle y}y võimsus suureneb 1 võrra iga kord alates 0 kuni n {\displaystyle n}. n
  • korda arvud Pascali kolmnurgast koos õigete terminitega.


Seega ( x + y ) =2 x 1y 2+0 x2 y 1+1 x1 y 0{\displaystyle2 (x+y)^{2}=1x^{2}y^{0}+2x^{1}y^{1}+1x^{0}y^{2}}} {\displaystyle (x+y)^{2}=1x^{2}y^{0}+2x^{1}y^{1}+1x^{0}y^{2}}


Näiteks:

( +3 x 2) = ⋅2132 ( x 2) + ⋅ 0231 ( x2 ) + ⋅ 1130 ( x2 ) = 2+9 x12 + x 4{\displaystyle (3+2x)^{2}=1\cdot 3^{2}\cdot (2x)^{0}+2\cdot 3^{1}\cdot (2x)^{1}+1\cdot2 3^{0}\cdot (2x)^{2}=9+12x+4x^{2}}} {\displaystyle (3+2x)^{2}=1\cdot 3^{2}\cdot (2x)^{0}+2\cdot 3^{1}\cdot (2x)^{1}+1\cdot 3^{0}\cdot (2x)^{2}=9+12x+4x^{2}}


Nii et reeglina:

( x + y ) n = a x0 n y +0 a x1 n -1 y + 1a x2 n - 2y + 2 + a n -1 x y1 n -1 + a n x y0 n {\displaystyle (x+y)^{n}=a_{0}x^{n}y^{0}+a_{1}x^{n-1}y^{1}+a_{2}x^{n-2}y^{2}+\cdots +a_{n-1}x^{1}y^{n-1}+a_{n}x^{0}y^{n}} {\displaystyle (x+y)^{n}=a_{0}x^{n}y^{0}+a_{1}x^{n-1}y^{1}+a_{2}x^{n-2}y^{2}+\cdots +a_{n-1}x^{1}y^{n-1}+a_{n}x^{0}y^{n}}

kus a i {\displaystyle a_{i}}{\displaystyle a_{i}} on arv reas n {\displaystyle n}n ja positsioonis i {\displaystyle i}{\displaystyle i} Pascali kolmnurgas.

Näited

( +5 x 3) = ⋅3153 ( x 3) + ⋅ 0352 ( x3 ) + ⋅ 1351 ( x 3) + ⋅ 2150 ( x3 ) {\displaystyle (5+3x)^{3}=1\cdot 5^{3}\cdot (3x)^{0}+3\cdot 5^{2}\cdot (3x)^{1}+3\cdot 5^{1}\cdot (3x)^{2}+1\cdot 5^{0}\cdot (3x)^{3}}}3 {\displaystyle (5+3x)^{3}=1\cdot 5^{3}\cdot (3x)^{0}+3\cdot 5^{2}\cdot (3x)^{1}+3\cdot 5^{1}\cdot (3x)^{2}+1\cdot 5^{0}\cdot (3x)^{3}}

= +12575 ⋅3 x + 15⋅9 x +21 ⋅27 x =3 + 125x225 + x 135+ 2x 27{\displaystyle =125+75\cdot 3x+15\cdot 9x^{2}+1\cdot 27x^{3}=125+225x+135x^{2}+27x^{3}}}3 {\displaystyle =125+75\cdot 3x+15\cdot 9x^{2}+1\cdot 27x^{3}=125+225x+135x^{2}+27x^{3}}

 

( 5-3 x ) = ⋅3153 ( - 3x ) + ⋅ 0352 ( - 3x ) + ⋅ 1351 ( - 3x ) + ⋅ 2150 ( - 3x ) {\displaystyle (5-3x)^{3}=1\cdot 5^{3}\cdot (-3x)^{0}+3\cdot 5^{2}\cdot (-3x)^{1}+3\cdot 5^{1}\cdot (-3x)^{2}+1\cdot 5^{0}\cdot (-3x)^{3}}}3 {\displaystyle (5-3x)^{3}=1\cdot 5^{3}\cdot (-3x)^{0}+3\cdot 5^{2}\cdot (-3x)^{1}+3\cdot 5^{1}\cdot (-3x)^{2}+1\cdot 5^{0}\cdot (-3x)^{3}}

= +12575 ( -3 x ) + 15⋅ 9x +21 ( - 27x )3 = 125- 223x + x1352 -27 x {\displaystyle3 =125+75\cdot (-3x)+15\cdot 9x^{2}+1\cdot (-27x^{3})=125-223x+135x^{2}-27x^{3}}} {\displaystyle =125+75\cdot (-3x)+15\cdot 9x^{2}+1\cdot (-27x^{3})=125-223x+135x^{2}-27x^{3}}

 

( +7 x 4)2 = ⋅5175 ( x4 )2 + ⋅ 0574 ( x4 )2 + ⋅ 11073 ( x4 )2 + ⋅ 21072 ( x4 )2 + ⋅ 3571⋅ ( x ) + ⋅ ⋅ ( x 4)2 + ⋅ 4170 ( x4 ) 2{\displaystyle (7+4x^{2})^{5}=1\cdot5 7^{5}\cdot (4x^{2})^{0}+5\cdot 7^{4}\cdot (4x^{2})^{1}+10\cdot 7^{3}\cdot (4x^{2})^{2}+10\cdot 7^{2}\cdot (4x^{2})^{3}+5\cdot 7^{1}\cdot (4x^{2})^{4}+1\cdot 7^{0}\cdot (4x^{2})^{5}}} {\displaystyle (7+4x^{2})^{5}=1\cdot 7^{5}\cdot (4x^{2})^{0}+5\cdot 7^{4}\cdot (4x^{2})^{1}+10\cdot 7^{3}\cdot (4x^{2})^{2}+10\cdot 7^{2}\cdot (4x^{2})^{3}+5\cdot 7^{1}\cdot (4x^{2})^{4}+1\cdot 7^{0}\cdot (4x^{2})^{5}}

= +1680712005 ⋅4 x + 23430⋅16 x + 4490⋅64 x + 635⋅ 256x + 81⋅1024 x {\displaystyle =16807+12005\cdot 4x^{2}+3430\cdot 16x^{4}+490\cdot 64x^{6}+35\cdot 256x^{8}+1\cdot 1024x^{10}}10 {\displaystyle =16807+12005\cdot 4x^{2}+3430\cdot 16x^{4}+490\cdot 64x^{6}+35\cdot 256x^{8}+1\cdot 1024x^{10}}

= +16807 x48020 + x +2 x 54880+ 4x 31360+ 6x8960 +8 x 1024{\displaystyle10 \,=16807+48020x^{2}+54880x^{4}+31360x^{6}+8960x^{8}+1024x^{10}}} {\displaystyle \,=16807+48020x^{2}+54880x^{4}+31360x^{6}+8960x^{8}+1024x^{10}}

Küsimused ja vastused

K: Mis on binoomiline laiendus?



V: Binoomi laiendamine on matemaatiline meetod, mille puhul kasutatakse väljendit, et luua rida, kasutades sulgudes väljendit (x+y)^n.

K: Milline on binomiaalpaisutuse põhikontseptsioon?



V: Binoomi laiendamise põhikontseptsioon on binoomväljendi potentsi laiendamine jadaks.

K: Mis on binoomiline avaldis?



V: Binoomiline avaldis on algebraline avaldis, mis sisaldab kahte terminit, mis on ühendatud pluss- või miinusmärgiga.

K: Milline on binoomi laiendamise valem?



V: Binoomi laiendamise valem on (x+y)^n, kus n on eksponent.

K: Kui palju on olemas binoomi laiendusi?



V: On olemas kolme tüüpi binoomi laiendusi.

K: Millised on kolm tüüpi binoomi laiendust?



V: Binoomi laienduste kolm liiki on - esimene binoomi laiendus, teine binoomi laiendus ja kolmas binoomi laiendus.

K: Kuidas on binoomiline laiendus kasulik matemaatilistes arvutustes?



V: Binoomi laiendamine on kasulik matemaatilistes arvutustes, sest see aitab lihtsustada keerulisi väljendeid ja lahendada keerulisi probleeme.

AlegsaOnline.com - 2020 / 2025 - License CC3