Mis on Gaussi Theorema Egregium?
K: Mis on Gaussi Theorema Egregium?
V: Gaussi Theorema Egregium on üks peamisi diferentsiaalgeomeetria tulemusi, mis käsitleb pindade kumerust, mida tõestas Carl Friedrich Gauss.
K: Kuidas saab Gaussi Theorema Egregium'i järgi kõverust määrata?
V: Gaussi Theorema Egregium'i järgi saab kõverust määrata ainult nurkade, vahemaade ja nende kiiruste mõõtmisega pinnal.
K: Kas kõveruse määramiseks on vaja rääkida konkreetsest viisist, kuidas pind on ümbritsevasse kolmemõõtmelisse eukleidilisse ruumi sisse ehitatud?
V: Ei, Gaussi Theorema Egregium'i kohaselt ei ole vaja Gaussi kõveruse määramiseks rääkida konkreetsest viisist, kuidas pind on ümbritsevasse kolmemõõtmelisse eukleidilisse ruumi põimitud.
K: Kas Gaussi kumerus muutub, kui pinda painutada ilma seda venitamata?
V: Ei, pinna Gaussi kõverus ei muutu, kui pinda painutada ilma seda venitamata vastavalt Gaussi Egregiumi teoreemale.
K: Kes esitas selle teoreemi sellisel viisil?
V: Gauss esitas teoreemi sel viisil.
K: Mille poolest on teoreem tähelepanuväärne?
V: See teoreem on "tähelepanuväärne", sest Gaussi kõveruse algmääratlus kasutab otseselt pinna asendit ruumis. Seega on üsna üllatav, et tulemus ei sõltu selle sisseehitusest, hoolimata kõigist läbitud painutus- ja väändemuutustest.
K: Millisel viisil esitas Gauss selle teoreemi?
V: Gauss esitas teoreemi nii, et kui kõverpind arendatakse mis tahes teisel pinnal, jääb kõveruse mõõt igas punktis muutumatuks.