Usaldusvahemik: mõiste, arvutamine ja 95% usaldusnivoo selgitus

Usaldusvahemik: selge juhend mõistele, arvutamisele ja 95% usaldusnivoo tõlgendusele. Õpi samm-sammult valemid, eeldused ja praktilised näited.

Autor: Leandro Alegsa

Statistikas on usaldusvahemik teatud parameetri hindamise erivorm. Selle meetodi puhul antakse parameetri jaoks ühe väärtuse asemel terve aktsepteeritavate väärtuste intervall koos tõenäosusega, et parameetri tegelik (tundmatu) väärtus on selles intervallis. Usaldusvahemik põhineb valimi vaatlustel ja on seega valimi puhul erinev. Tõenäosust, et parameeter on intervalli sees, nimetatakse usaldusnivooks. Väga sageli esitatakse see protsentides. Usaldusvahemik esitatakse alati koos usaldusnivooga. Võib rääkida "95% usaldusvahemikust". Usaldusintervalli lõpp-punkte nimetatakse usalduspiirideks. Mida kõrgem on usaldusnivoo, seda laiem on usaldusvahemik, mida suurem on usaldusvahemik.

Usaldusvahemiku arvutamine nõuab üldiselt eeldusi hindamisprotsessi olemuse kohta - see on peamiselt parameetriline meetod. Üks levinud eeldus on, et valimi aluseks oleva populatsiooni jaotus on normaalne. Seega ei ole allpool käsitletavad usaldusvahemikud robustne statistika, kuigi robustsuse lisamiseks võib teha muudatusi.

Mida usaldusvahemik tegelikult tähendab?

95% usaldusnivoo tähendab, et kui me korraksime sama analüüsi (võtaksime samasuguse suurusega juhusliku valimi ja arvutaksime usaldusvahemiku) palju kordi, siis ligikaudu 95% neist arvutatavatest vahemikest sisaldaks populaarsest tegelikku parameetri väärtust. See ei tähenda, et antud ühe arvutatud vahemiku puhul on tõenäosus täpselt 95% selle konkreetse intervalli sees olla — sageduslikus statistikas on ühe konkreetse intervalli puhul parameeter kas sees või väljas. Praktikas võetakse aga tihti lihtsustatud tõlgendusena, et "on 95% usaldust, et tõeline väärtus jääb selle vahemiku sisse".

Kuidas arvutatakse usaldusvahemik (põhitõed)

Usaldusvahemiku laius sõltub kolmest peamisest komponendist:

  • Hinnang — nt valimi keskmine või osakaal.
  • Standardsest veast (SE) — kui suur on hinnangu hajuvus: SE = s / √n keskmise puhul (kus s on valimi standardhälve ja n on valimi suurus).
  • Mitmekordsest kritilisest väärtusest — määratud usaldusnivoo alusel (nt z- või t-kriteerium, näiteks z ≈ 1.96 95% kahepoolse vahemiku jaoks).

Üldine kahepoolne valem keskmise puhul on:

usaldusvahemik = hinnang ± kriitiline_väärtus × SE

95% usaldusvahemik keskmise jaoks (näide)

Kui meil on valimi keskmine x̄, standardhälve s ja suurus n, siis 95% usaldusvahemik (kui populatsioonijaotus on ligikaudu normaalne) arvutatakse tavaliselt kas kasutades z‑või t‑jaotust:

  • Kui n on suur (või kui populatsiooni hajuvus on teada), kasutatakse z‑kriitilist väärtust ≈ 1.96: x̄ ± 1.96 × (s/√n).
  • Kui n on väike ja populatsiooni standardhälvet ei teata, kasutatakse t‑jaotuse kriitilist väärtust t_{n-1, 0.975}: x̄ ± t_{n-1,0.975} × (s/√n).

Näide: valimi keskmine on 100, s = 15, n = 25. SE = 15/√25 = 3. Kui kasutame t‑jaotust (df = 24) ja t ≈ 2.064, siis 95% usaldusvahemik ≈ 100 ± 2.064 × 3 = 100 ± 6.192 → (93.81, 106.19).

Usaldusvahemik proportsiooni jaoks

Proportsiooni p-hinnangu (nt osakaal) tavaline ligikaudne 95% vahemik on:

p ± 1.96 × √(p(1 − p)/n)

Kuid väikeste valimite või äärmuslike p väärtuste puhul on parem kasutada Wilsoni vahemikku või täpsemaid meetodeid, sest lihtne Wald‑vahemik võib anda ebatäpseid või isegi ebaadekvaatseid tulemusi.

Mõned olulised täpsustused ja eeldused

  • Juhuslik valim: usaldusvahemiku kehtivus sõltub sellest, et valim oleks juhuslik ja esinduslik.
  • Jaotuse eeldus: paljud valemid eeldavad normaaljaotust (või suurt n, kus Keskväärtuste Keskpiiruste Teoreemist tulenevalt on normaaljaotus kehtiv).
  • Parameetriline vs mitteparameetriline: standardsed usaldusvahemikud on parameetrilised; kui eeldused ei pea, võib kasutada robustseid meetodeid või bootstrap‑taasesinemisi usaldusvahemiku hindamiseks.

Ühepoolne vs kahepoolne usaldusvahemik

Enamikul juhtudel esitatakse kahepoolne usaldusvahemik (nt 95% kahepoolne). Kui huvi on ainult ühes suunas (nt kas keskmine on väiksem kui mingi piir), võidakse kasutada ühepoolset usaldusvahemikku — see muudab kriitilise väärtuse vastavalt (näiteks 95% ühepoolne vastab kahepoolsele 90% kriitilisele tasemele).

Kuidas usaldusvahemikku teatada ja tõlgendada

  • Esita alati usaldusnivoo (nt "95% usaldusvahemik").
  • Kirjuta selgelt hinnang ja piirid (näiteks "keskmine = 100, 95% usaldusvahemik 93.8 kuni 106.2").
  • Ära väida, et "on 95% tõenäosus, et tõeline väärtus on selles konkreetses vahemikus" ilma Bayesiaanalüüsita — korrektsem on öelda, et "seda protseduuri korrates sisaldaks 95% moodustatud vahemikest tõelist väärtust".

Tüüpilised eksiarvamused ja piirangud

  • Usaldusvahemik ei ota arvesse uuringu võimalikke pööramatusi, valikukaldkonda või süsteemseid vigu — see kajastab ainult juhuslikku viga tingimusel, et eeldused kehtivad.
  • Laialt levinud on usaldusvahemiku ja statistilise olulisuse (p‑väärtuse) segamine — need annavad erinevat teavet: usaldusvahemik näitab võimalikku suurust ja täpsust, p‑väärtus tähistab tõenäosust saada vaadeldud (või äärmuslikum) tulemus nullhüpoteesi korral.

Alternatiivid ja täiustused

  • Bootstrap: mitteparameetriline korduvvõtmise meetod, mille abil saab hinnata usaldusvahemikku ilma tugeva jaotuse eelduseta.
  • Robustsed meetodid: näiteks keskmise asemel mediaani usaldusvahemikud või muudetud standardvead outlier'ite vähendamiseks.
  • Bayesiaalsed usaldusintervallid (credible intervals): annavad otseselt tõlgendatava tõenäosuse, kuna kasutavad priore ja andmeid koos, kuid nõuavad priori valikut.

Lõppsõna

Usaldusvahemik on võimas vahend hinnangute täpsuse kirjeldamiseks, kuid selle õige kasutamine nõuab teadlikkust eeldustest ja piirangutest. Selgelt formuleeritud vahemik koos usaldusnivoo ja kasutatud meetodiga aitab tõlgendada tulemusi täpsemalt ja vältida levinud väärarusaamu.

Termini "usaldus" tähendus

Mõiste "usaldus" omab sarnast tähendust statistikas, nagu ka tavakasutuses. Tavakasutuses peetakse tavaliselt 95% usaldust millegi suhtes, mis näitab peaaegu kindluse olemasolu. Statistikas tähendab väide 95% usaldatavuse kohta lihtsalt seda, et uurija on näinud suurest hulgast võimalikest intervallidest ühte, millest üheksateistkümnes intervall kahekümnest sisaldab parameetri tõelist väärtust.

Praktiline näide

A factory assembly line fills margarine cups to a desired 250g +/- 5g

Masin täidab tassid margariiniga. Näites on masin reguleeritud nii, et tassi sisu on 250 g margariini. Kuna masin ei saa täita iga tassi täpselt 250 g, siis on üksikutesse tassidesse lisatud sisu teatav varieeruvus ja seda loetakse juhuslikuks muutujaks X. See varieeruvus on eeldatavasti normaalselt jaotunud soovitud keskmise 250 g ümber, standardhälbega 2,5 g. Kui masin ei täida iga tassiga, siis ei ole see võimalik, sest see on juhuslik muutuja. Selleks, et teha kindlaks, kas masin on piisavalt kalibreeritud, valitakse juhuslikult n = 25 margariinipokaali suurune valim ja kaalutakse need pokaalid. Margariini kaalud on X1, ..., X25, mis on juhuslik valim X.

Et saada ettekujutust μ, piisab hinnangu andmisest. Sobiv hindaja on valimi keskmine:

μ ^ = X ¯ = 1 n ∑ i = 1 n X i . {\displaystyle {\hat {\mu }={\bar {X}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}. } {\displaystyle {\hat {\mu }}={\bar {X}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}.}

Valim näitab tegelikke kaalusid x1, ...,x25 koos keskmisega:

x ¯ = 1 25 ∑ i = 1 25 x i = 250,2 grammi . {\displaystyle {\bar {x}={\frac {1}{25}}\sum _{i=1}^{25}x_{i}=250.2\,{\text{grammi}}. } {\displaystyle {\bar {x}}={\frac {1}{25}}\sum _{i=1}^{25}x_{i}=250.2\,{\text{grams}}.}

Kui me võtame teise 25 tassi suuruse valimi, võime kergesti oodata selliseid väärtusi nagu 250,4 või 251,1 grammi. Valimi keskmine väärtus 280 grammi oleks aga äärmiselt haruldane, kui tasside keskmine sisu on tegelikult 250 grammi lähedal. Valimi keskmise täheldatud väärtuse 250,2 ümber on terve intervall, mille piires, kui kogu populatsiooni keskmine väärtus jääb tõepoolest sellesse vahemikku, ei peeta täheldatud andmeid eriti ebatavaliseks. Sellist intervalli nimetatakse parameetri μ usaldusvahemikuks. Kuidas sellist intervalli arvutada? Intervalli lõpp-punktid tuleb arvutada valimi põhjal, seega on nad statistika, valimi X1, ..., X25 funktsioonid ja seega juhuslikud muutujad ise.

Meie puhul võime määrata lõpp-punktid, võttes arvesse, et normaalselt jaotunud valimi keskmine X on samuti normaalselt jaotunud, sama ootusega μ, kuid standardveaga σ/√n = 0,5 (gramm). Standardiseerimisel saame juhusliku muutuja

Z = X ¯ - μ σ / n = X ¯ - μ 0.5 {\displaystyle Z={\frac {{\bar {X}}-\mu }{\sigma /{\sqrt {n}}}}={\frac {{\bar {X}}-\mu }{0.5}}}} {\displaystyle Z={\frac {{\bar {X}}-\mu }{\sigma /{\sqrt {n}}}}={\frac {{\bar {X}}-\mu }{0.5}}}

sõltub hinnatavast parameetrist μ, kuid standardse normaaljaotusega, mis on sõltumatu parameetrist μ. Seega on võimalik leida arvud -z ja z, mis on sõltumatud μ-st, kus Z jääb nende vahele tõenäosusega 1 - α, mis näitab, kui kindlad me tahame olla. Võtame 1 - α = 0,95. Seega on meil:

P ( - z ≤ Z ≤ z ) = 1 - α = 0,95. {\displaystyle P(-z\leq Z\leq z)=1-\alpha =0,95.\,} {\displaystyle P(-z\leq Z\leq z)=1-\alpha =0.95.\,}

Arv z tuleneb kumulatiivsest jaotumisfunktsioonist:

Φ ( z ) = P ( Z ≤ z ) = 1 - α 2 = 0,975 , z = Φ - 1 ( Φ ( z ) ) = Φ - 1 ( 0,975 ) = 1.96 , {\displaystyle {\begin{aligned}\Phi (z)&=P(Z\leq z)=1-{\tfrac {\alpha }{2}}=0.975,\\\[6pt]z&=\Phi ^{-1}(\Phi (z))=\Phi ^{-1}(0.975)=1.96,\end{aligned}}} {\displaystyle {\begin{aligned}\Phi (z)&=P(Z\leq z)=1-{\tfrac {\alpha }{2}}=0.975,\\[6pt]z&=\Phi ^{-1}(\Phi (z))=\Phi ^{-1}(0.975)=1.96,\end{aligned}}}

ja me saame:

0,95 = 1 - α = P ( - z ≤ Z ≤ z ) = P ( - 1,96 ≤ X ¯ - μ σ / n ≤ 1,96 ) = P ( X ¯ - 1,96 σ n ≤ μ ≤ X ¯ + 1.96 σ n ) = P ( X ¯ - 1,96 × 0,5 ≤ μ ≤ X ¯ + 1,96 × 0,5 ) = P ( X ¯ - 0,98 ≤ μ ≤ X ¯ + 0,98 ) . {\displaystyle {\begin{aligned}0.95&=1-\alpha =P(-z\leq Z\leq z)=P\left(-1.96\leq {\frac {\bar {X}-\mu }{\sigma /{\sqrt {n}}}}\leq 1.96\right)\\[6pt]&=P\left({\bar {X}}-1.96{\frac {\sigma }{\sqrt {n}}}\leq \mu \leq {\bar {X}}+1.96{\frac {\sigma }{\sqrt {n}}}\right)\\[6pt]&=P\left({\bar {X}}-1.96\times 0.5\leq \mu \leq {\bar {X}}+1.96\times 0.5\right)\\[6pt]&=P\left({\bar {X}}-0.98\leq \mu \leq {\bar {X}}+0.98\right).\end{aligned}}} {\displaystyle {\begin{aligned}0.95&=1-\alpha =P(-z\leq Z\leq z)=P\left(-1.96\leq {\frac {{\bar {X}}-\mu }{\sigma /{\sqrt {n}}}}\leq 1.96\right)\\[6pt]&=P\left({\bar {X}}-1.96{\frac {\sigma }{\sqrt {n}}}\leq \mu \leq {\bar {X}}+1.96{\frac {\sigma }{\sqrt {n}}}\right)\\[6pt]&=P\left({\bar {X}}-1.96\times 0.5\leq \mu \leq {\bar {X}}+1.96\times 0.5\right)\\[6pt]&=P\left({\bar {X}}-0.98\leq \mu \leq {\bar {X}}+0.98\right).\end{aligned}}}

Seda võib tõlgendada järgmiselt: tõenäosusega 0,95 leiame usaldusvahemiku, kus me kohtame parameetrit μ stohhastiliste lõpp-punktide vahel.

X ¯ - 0 . 98 {\displaystyle {\bar {X}-0{.}98\,} {\displaystyle {\bar {X}}-0{.}98\,}

ja

X ¯ + 0.98. {\displaystyle {\bar {X}+0.98.\,} {\displaystyle {\bar {X}}+0.98.\,}

See ei tähenda, et parameeter μ vastab 0,95 tõenäosusega arvutatud intervallile. Iga kord, kui mõõtmisi korratakse, on valimi keskväärtuse X jaoks uus väärtus. 95% juhtudest jääb μ selle keskväärtuse põhjal arvutatud lõpp-punktide vahele, kuid 5% juhtudest mitte. Tegelik usaldusvahemik arvutatakse, sisestades mõõdetud kaalud valemisse. Meie 0,95 usaldusvahemikuks saab:

( x ¯ - 0,98 ; x ¯ + 0,98 ) = ( 250,2 - 0,98 ; 250,2 + 0,98 ) = ( 249,22 ; 251,18 ) . {\displaystyle ({\bar {x}}-0.98;{\bar {x}}+0.98)=(250.2-0.98;250.2+0.98)=(249.22;251.18).\,} {\displaystyle ({\bar {x}}-0.98;{\bar {x}}+0.98)=(250.2-0.98;250.2+0.98)=(249.22;251.18).\,}

Kuna soovitud μ väärtus 250 on saadud usaldusvahemiku piires, ei ole põhjust arvata, et masin on valesti kalibreeritud.

Arvutataval intervallil on fikseeritud lõpp-punktid, mille vahel võib olla μ (või mitte). Seega on selle sündmuse tõenäosus kas 0 või 1. Me ei saa öelda: "tõenäosusega (1 - α) asub parameeter μ usaldusvahemikus". Me teame ainult, et kordades 100(1 - α) % juhtudest jääb μ arvutatud intervalli sisse. 100α % juhtudest aga ei ole. Ja kahjuks ei tea me, millistel juhtudel see juhtub. Seepärast ütleme me: "usaldusnivoo 100(1 - α) % korral jääb μ usaldusvahemikku. "

Joonisel paremal on näidatud 50 usaldusintervalli realisatsiooni antud populatsiooni keskmise μ jaoks. Kui me valime juhuslikult ühe realisatsiooni, on 95% tõenäosus, et me valime lõpuks intervalli, mis sisaldab parameetrit; me võime aga olla õnnetud ja valida vale intervalli. Me ei saa seda kunagi teada; me jääme oma intervallile kindlaks.

Vertikaalsed joonsegmendid kujutavad 50 realisatsiooni usaldusintervalli μ jaoks.Zoom
Vertikaalsed joonsegmendid kujutavad 50 realisatsiooni usaldusintervalli μ jaoks.

Küsimused ja vastused

K: Mis on usaldusvahemik statistikas?


V: Usaldusintervall on spetsiaalne intervall, mida kasutatakse parameetri, näiteks populatsiooni keskmise hindamiseks, andes parameetri jaoks ühe väärtuse asemel vastuvõetavate väärtuste vahemiku.

K: Miks kasutatakse usaldusvahemikku ühe väärtuse asemel?


V: Usaldusvahemikku kasutatakse üksikväärtuse asemel selleks, et võtta arvesse parameetri hindamise ebakindlust valimi põhjal ja anda tõenäosus, et parameetri tegelik väärtus jääb vahemikku.

K: Mis on usaldusvahemik?


V: Usaldustase on tõenäosus, et hinnatav parameeter on usaldusvahemiku piires, ja seda esitatakse sageli protsentides (nt 95% usaldusvahemik).

K: Mis on usalduspiirid?


V: Usalduspiirid on usaldusvahemiku lõpp-punktid, mis määratlevad hinnatava parameetri aktsepteeritavate väärtuste vahemiku.

K: Kuidas mõjutab usalduspiir usaldusvahemikku?


V: Mida kõrgem on usalduspiir, seda laiem on usaldusvahemik.

K: Milliseid eeldusi on usaldusvahemiku arvutamiseks vaja?


V: Usaldusintervalli arvutamiseks on üldiselt vaja eeldusi hindamisprotsessi olemuse kohta, näiteks eeldust, et populatsiooni, millest valim pärineb, jaotus on normaalne.

K: Kas usaldusvahemikud on robustne statistika?


V: Usaldusvahemikud, nagu allpool käsitletakse, ei ole robustne statistika, kuigi robustsuse lisamiseks võib teha kohandusi.


Otsige
AlegsaOnline.com - 2020 / 2025 - License CC3